
The Bosch Steering Angle Sensor as a technical Solution for Multi-dimensional Requirements

Andrew Henkel

Robert Bosch GmbH

Chassis Systems Control

Product Group Sensors

Contents

What were the main questions for this market analysis?

- Which systems need steering angle information?
- Which market trends can be identified?
- How dominant are the systems?
- Consequences derived from the market analysis

What is our answer?

- Sensor design
- Measurement principle
- Technical Data
- Variants

Systems using the SAS Information

Electronic Stability Program (ESP)

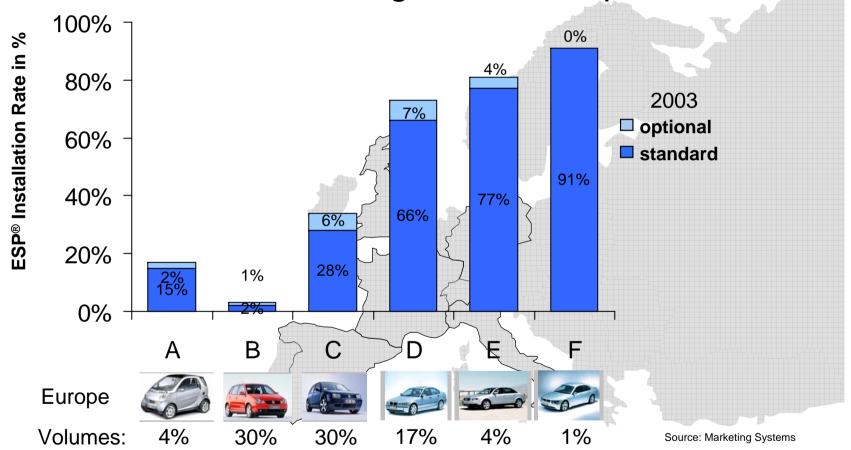
Active Steering (AS)

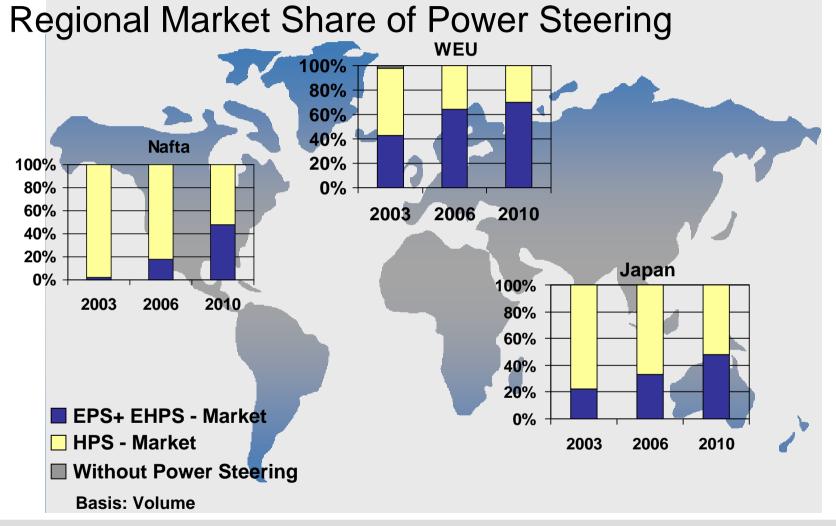
Advanced Front Lighting (AFS)

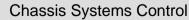
Lane Departure Warning (LDW)

4 Wheel Steering (4WS)

Active Suspension




Steering Angle Sensor Market – Installation Rate


ESP® in all Vehicle Segments, Europe

Steering Angle Sensor Market – Installation Rate

Steering Angle Sensor Market – Installation Rate

Installation Rates in Upper Class Segment 2008

System

Installation Rate
Upper Class

Trend in other Segments

Advanced Front Lighting (AFS)

80 - 100 %

1

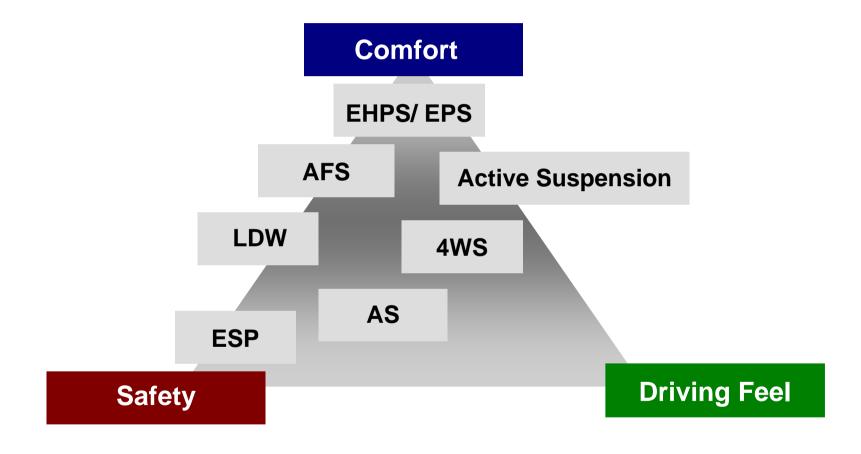
Active Steering (AS)

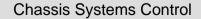
30 - 50 %

Lane Departure Warning (LDW)

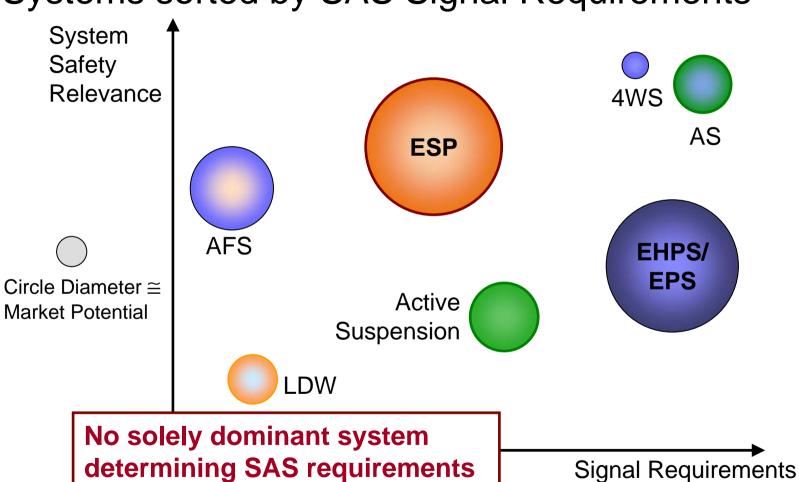
10 - 20 %

Chassis Systems Control

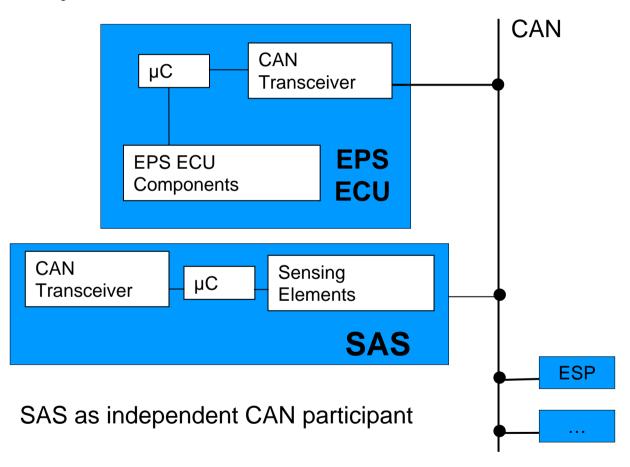

BOSCH


Market View based on Installation Rate

- Every System using steering angle information has a different averaged installation rate
- An accumulation of such systems in specific segments cannot be recognized
- The installation of these systems are distributed differently within the regions EU, AM, AP
- Some systems migrate from upper to lower segments (ESP, AS, AFS)
 whereas others are can mainly be found in lower segments (EPS)
- → In regards to the installation rate there is no system dominant enough to determine the requirements of a steering angle sensor.

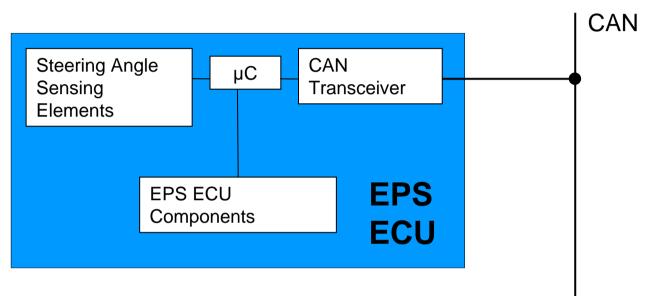

Steering Angle Sensor Market Systems sorted by Functions

Systems sorted by SAS Signal Requirements



Further Aspects

- **Mounting Area** Fully integrated in combi-switch unit or stand-alone sensor
 - Advantage of integrated SAS: Reduced amount of parts Only completed module has to be logistically handled
 - Advantage of stand-alone SAS: Flexibility regarding vehicle equipment rate Flexibility in supplier selection
- Power Supply Increasing number of systems and components needing quiescent current favors the use of sensors without stand-by current
- Integration of SAS in EPS System



Current System Architecture with SAS

Trend: Integration of SAS in EPS Systems

- Reduced number of components: µC and CAN transceiver of EPS ECU used for SAS signal evaluation and distribution
- SAS no longer an independent CAN participant

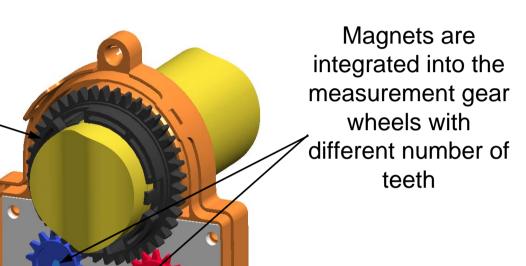
Conclusions

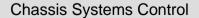
- A large number of systems need the steering angle information
- In some cases the system requirements are quite different
- The market is inconsistent regarding the allocation of such systems in vehicle segments and their combination in one vehicle
- As many of these systems are offered optionally a market forecast is very complicated
- A trend towards SAS integration into the EPS System is recognized

→ Result:

The future SAS generation must be able to cope with the various different system requirements and also be able to offer the lowest market price possible

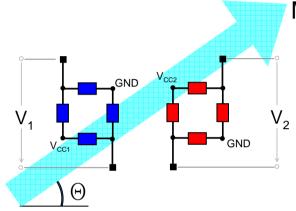
→ Solution:


A modular scalable steering angle sensor



Design

The hub is firmly connected to the steering column driving two measurement gear wheels


The iGMR elements measure the angle values and are mounted below each gear wheel

iGMR: Angle Measurement per Gear Wheel

90 180 270 360

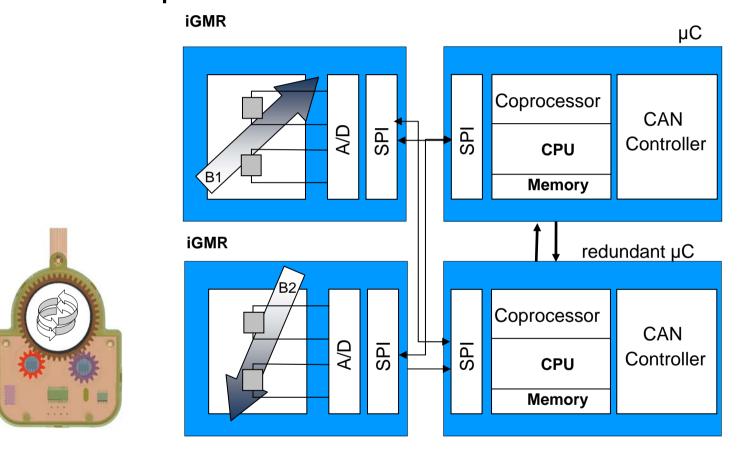
Magnetic Field B

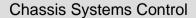
V₁, V₂ dependant on direction of magnet field

Arrangement of both measurement circuits creates signal phase shift of 90° between V_1 and V_2

$$V_1 = A(T) \cdot \sin\Theta$$

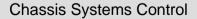
$$V_2 = A(T) \cdot \cos \Theta$$


$$\Theta = \arctan\left(\frac{V_1}{V_2}\right)$$
 Measurement range of iGMR elements is 360°


Temperature dependence of the amplitudes of V₁ and V₂ is eliminated

Steering Angle Sensor LWS5 Measurement Principle 360 Measuring gear Hub gear wheel wheel with n teeth representing the representing the angle steering wheel angle Φ Measuring gear Magnet wheel with n+2 teeth K= f(0, w) representing the angle Ψ 360 Gear wheel angle **ψ** and **θ** [⁰] 360 1420 720 1080 Absolute measuring range φ [°] **Chassis Systems Control BOSCH** 16 CC-SNS/SPS-HI | 4/19/2006 | 0203P00569e v01 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties.

Modular Concept


Failure Probability and Safe Failure Fraction

Error definition: angle deviation of >8° not detected within 10ms

	Failure Probability (Q)	SFF (*)
SIL3 (***) Requirement	< 10 ⁻⁹ /h	> 99% for HFT0 ^(**)
1 µC	6.1 * 10 ⁻¹⁰ /h	98.2%
2 µC	3.5 * 10 ⁻¹⁰ /h	99.0%

^{*} SFF Safe Failure Fraction: fraction of safe (controlled) errors out of all errors

^{***} IEC 61508

^{**} HFT Hardware Failure Tolerance, HFT0: one channel system

Technical Data of Standard Version LWS 5.3

Measuring Range: 1560°

Resolution

- Angle: 0.1°

- Angle Speed: 4°/s

Accuracy

- Angle: ±2.5°

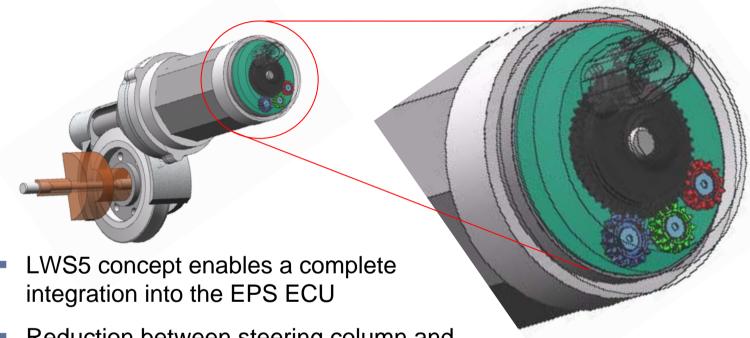
- Angle Speed: ± 15°/s

Max. Angle Speed: 2500°/s

Refresh Rate 10 ms

Temperature Range -40°C ... +85°C

Variants



	LWS 5.4.yz	LWS 5.3.yz	LWS 5.2.yz
Interface	customer specific	CAN	CAN
iGMR ICs	2	2	1
Class	3	3	2
[Measuring Range]	[±780°]	[±780°]	[±90°]
Characteristics	Enhanced performance due to more powerful µC	Standard LWS for ESP applications	Measuring range dependant on gear ratio between hub measuring gear

Integration of SAS in EPS System

- Reduction between steering column and
 EPS motor calls for a extremely wide angle measurement range
- Angle range covered by a special Vernier principal patented by Bosch

Summary


- The angle resolution of 0,1° enables the use of the LWS5 in systems with much more stringent requirements than ESP, such as Driver Surveillance Systems and some EPS applications
- The refresh rate and performance of the sensor are scalable and can be adjusted to the system requirements
- The modular design of the sensor enables us to offer a cost efficient solution exactly meeting all customer needs
- The patented Vernier measurement principle stores the absolute angle position mechanically and therefore the sensor does not need any stand-by current
- An integration of the LWS 5 concept into an EPS system is possible

Thank you very much for your attention!

Andrew Henkel
Robert Bosch GmbH
Chassis Systems Control
Product Group Sensors

